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Continuum percolation for randomly oriented soft-core prisms
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We study continuum percolation of three-dimensional randomly oriented soft-core polyhedra~prisms!. The
prisms are biaxial or triaxial and range in aspect ratio over six orders of magnitude. Results for prisms are
compared with studies for ellipsoids, rods, ellipses, and polygons and differences are explained using the
concept of the average excluded volume,^vex&. For large-shape anisotropies we find close agreement between
prisms and most of the above-mentioned shapes for the critical total average excluded volume,nc^vex&, where
nc is the critical number density of objects at the percolation threshold. In the extreme oblate and prolate limits
simulations yieldnc^vex&'2.3 andnc^vex&'1.3, respectively. Cubes exhibit the lowest-shape anisotropy of
prisms minimizing the importance of randomness in orientation. As a result, the maximum prism value,
nc^vex&'2.79, is reached for cubes, a value close tonc^vex&52.8 for the most equant shape, a sphere.
Similarly, cubes yield a maximum critical object volume fraction offc50.22. fc decreases for more prolate
and oblate prisms and reaches a linear relationship with respect to aspect ratio for aspect ratios greater than
about 50. Curves offc as a function of aspect ratio for prisms and ellipsoids are offset at low-shape anisotro-
pies but converge in the extreme oblate and prolate limits. The offset appears to be a function of the ratio of the
normalized average excluded volume for ellipsoids over that for prisms,R5^vex&e /^vex&p . This ratio is at its
minimum of R50.758 for spheres and cubes, wherefc(sphere)50.2896 may be related tofc(cube)50.22 by
fc(cube)512@12fc(sphere)#

R50.23. With respect to biaxial prisms, triaxial prisms show increased normal-
ized average excluded volumes,^vex&, due to increased shape anisotropies, resulting in reduced values offc .
We confirm thatBc5nc^vex&52Cc applies to prisms, whereBc andCc are the average number of bonds per
object and average number of connections per object, respectively.

DOI: 10.1103/PhysRevE.65.056131 PACS number~s!: 64.60.Ak, 68.35.Rh, 05.10.Ln
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I. INTRODUCTION

The transport properties of multiphase materials may
ther reflect the deformation of the material as a whole un
applied stress~rheology! or the transfer of some medium
such as electrons or fluids, within the material~conductivity!.
Both types of transport are fundamentally different and
pend on the relevant material properties in different wa
However, rheology and conductivity of composite materi
are both determined in part by the interconnectivity of th
individual elements~objects! that constitute their phases.

Percolation theory describes interconnectivity of obje
in a random multiphase system as a function of the geom
distribution, volume fraction, and orientation of the objec
The structure of the composite material may evolve w
time due to chemical reactions or temperature change
critical threshold may be passed during the structural ev
tion and as a result some material properties such as y
strength or conductivity can change abruptly and may exh
a power-law behavior above, and close to, the so-called
colation threshold.

Examples of composite materials that show tim
dependent rheology include cements@1#, gels@2#, and mag-
mas @3#. Similarly, the conductivity of a medium for fluid
~permeability! or electrons may change with time. For e
ample the permeability of a material changes with the form
tion or closure of pores and fractures in solids@4# or with
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growth and coalescence or degassing of bubbles in liqu
@5#. Similarly, electrical conductivity depends on the amou
geometry, and interconnectivity of the conductor@6–8#. In
general, multiple processes@9# in the physical, chemical, bio
logical, and earth sciences appear to show power law,
fractal, properties above a certain threshold and may thu
described by percolation theory.

Several soft-core~interpenetrating objects! continuum
~randomly positioned! percolation studies have been co
ducted in three-dimensional~3D! systems. Investigated 3D
percolating objects include spheres@10–13#, parallel-aligned
@6# or randomly oriented@14# ellipsoids, parallel-aligned
cubes @6#, and randomly oriented hemispherically capp
cylinders @15,16#. In some studies, randomly oriented 2
ellipses@17# and 2D polygons@4# are placed in a 3D system
to simulate fractures where the third object dimension m
be neglected.

In this paper we investigate continuum percolation
randomly oriented 3D soft-core prisms. The objective is
point out similarities between prisms and other percolat
systems studied previously, to expand on explanations
differences using the excluded volume concept@18# as intro-
duced by Balberget al. @16,19#, and to compare the numbe
of bonds per object to the total average excluded volu
@16#. The latter two parameters may serve as ‘‘quas
invariants@16,19,20#. We investigate prisms because in a 3
system, results can be compared in the extreme oblate
with 2D polygons and 2D ellipses, in the extreme prola
limit with hemispherically capped cylinders or rods, and f
all aspect ratios with ellipsoids. Furthermore, our paper
motivated by the observation that some media, such as
©2002 The American Physical Society31-1
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MARTIN O. SAAR AND MICHAEL MANGA PHYSICAL REVIEW E 65 056131
pensions containing prismatic particles that can intergr
~e.g., crystal-melt suspensions, such as some magmas@3#!
may best be described by interpenetrating 3D polyhedra

Parameters of interest at the percolation threshold are
critical number density of prismsnc , the critical prism vol-
ume fractionfc , and the critical total average excluded vo
ume ^Vex&. The latter parameter is given bŷVex&
[nc^vex& @16#, where the excluded volumevex is the vol-
ume around an object in which the center of another s
object cannot be placed without overlap@18#. The angular
brackets,^&, denote spatial averaging over all orientati
~and size! distributions. We determine numerically the ave
age excluded volume,^vex&, for some prism shapes. Finally
the critical average number of bonds per object,Bc , is de-
termined numerically and compared with^Vex&. All param-
eters are investigated for possible contributions to an inv
ant allowing predictions of percolation thresholds. Beca
of the sometimes misleading nomenclature, especially c
cerning Bc , we review some percolation theory concep
throughout this paper.

II. METHOD

In a soft-core system the percolation threshold is reac
when a continuous pathway of overlapping objects ex
connecting opposing sides of a bounding box. Our comp
code determines the percolation threshold and related pa
eters for convex 3D soft-core polyhedra of any shape, s
and orientation distribution that are randomly position
~continuum percolation!. Here we focus on randomly ori
ented biaxial and triaxial soft-core prisms of uniform size.
soft-core continuum percolation, size distribution of obje
does not appear to affectfc @3# and results for parallel-
aligned objects are independent of object shape@19#.

Overlap of objects is determined analytically. The volum
fraction of a phase is determined by the number density
objectsn that constitute the phase and the object’s unit v
umeV by @21#

f512exp~2nV!. ~1!

Results forf using Eq.~1! can be verified through compar
son with numerical volume fraction calculations using
space discretization method@3#. In order to reduce finite size
effects and the possibility of imposing large-scale struct
we place objects within a large unit bounding box who
volume typically is 8 to 64 times larger than the volume
an inner bounding box used to determine connection
tween opposing sides~Fig. 1!. The more common approac
is to perform calculations with periodic boundary conditio
@4,14,17#. In all simulations, the largest object side length
one tenth or less of the side length of the inner bounding b
Figure 1 shows visualizations of simplified simulations f
randomly oriented biaxial oblate and prolate prisms.

Our computational method is tested by comparing res
with well-established values, such asfc and ^vex& for
spheres and parallel-aligned objects@6,16#, and by visualiza-
tions of simulations at lownc . Moreover, the critical numbe
density of clusters per unit volumensc at percolation scales
05613
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as nsc}s2t over more than four orders of magnitude ofs,
where s is the number of objects in a cluster andt'2.2.
Thus, the cluster-size distribution follows the power-law r
lationship expected betweennsc and s close to the percola-
tion threshold@22,23#, suggesting that finite-size effects a
minimal.

For two continuous convex objects the average exclu
volume ^vex& can be determined analytically by

^vex&5Va1Vb1~AaRa1AbRb!/4p, ~2!

whereV is the volume,A the area, andR the mean radius of
curvature of the objectsa and b @24#. The prisms in this
study, however, have corners so thatR, and thuŝ vex&, can-
not be determined analytically using Eq.~2!. Instead we em-
ploy a method analogous to Garbocziet al. @14# and de la
Torre et al. @25#, and determinê vex& numerically by ran-
domly placing two objects of random orientation within
box and testing for overlap. This is repeated typically 16

times and the ratio of the number of overlaps over the to
number of trials times the volume of the box is^vex&. To
obtain a mean and a standard error, we repeat the ab
procedure ten times. We test this method for the case
parallel-aligned objects of volumeV, where in 3D for any
convex object shapêvex&583V. This is also a test of the
contact function for objects@14#.

FIG. 1. Visualization of asimplifiedsimulation of large biaxial
oblate~a! and ~b! and prolate~c! and ~d! prisms with aspect ratios
1:10 ~short-over-long axis! and 10:1~long-over-short axis!, respec-
tively. The critical number densities arenc51060 andnc57025 for
the oblate and prolate prism simulations, respectively. Inactual
simulations object side lengths are about 1/10 or less than the
length of the inner bounding box.nc increases with object elonga
tion up tonc573105 for prolate prisms of aspect ratio 1000:1. Th
inner bounding box is used to determine if a continuous phase
backbone~b! and ~d! exists ~percolation threshold!. Objects are
placed throughout the inner and outer bounding box and withi
fringe around the outer box so that objects can protrude into the
~a! and ~c!. The average number of bonds per objectBc and the
number densitync are determined using all object overlaps a
object centers, respectively, that fall within the large bounding b
1-2
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CONTINUUM PERCOLATION FOR RANDOMLY ORIENTED . . . PHYSICAL REVIEW E 65 056131
All simulations are repeated ten times to calculate a m
and its standard error forfc , nc , andBc . Error bars in all
figures indicate 95% confidence intervals. Biaxial object
pect ratios are given as small-over-large and as large-o
small axis length for oblate and prolate objects, respectiv
The shape anisotropyj of an object is defined here as th
ratio of large-over-short axis length for both oblate and p
late objects.

III. AVERAGE NUMBER OF BONDS PER OBJECT Bc

Objects in soft-core continuum percolation can interp
etrate each other. The average excluded volume^vex& is al-
ways defined for two objects~A and B!. When placed within
a unit volume^vex& describes the probability of each cent
A and B being within the other object’s excluded volum
each causing an overlap, or bond~Fig. 2!.

Therefore, in a unit volume,n^vex& describes the prob
ability of n object centers being withinn excluded volumes
each causing an overlap, or bond, for each individual obj
or two bonds per connection~Fig. 2!. This method of count-
ing each bond is commonly referred to as counting ‘‘bon
per object,’’ which has to be distinguished from the mo
intuitive average number of connections per object

C5
~ total number of bonds!

~ total number of objects!
, ~3!

denotedCc at percolation. The critical average number
bonds per object at percolation is given by@16#

Bc5nc^vex& ~4!

and thus@26#

Cc5
nc^vex&

2
5

Bc

2
. ~5!

FIG. 2. Illustration of the overlap of two objects in a 2
parallel-aligned system~for easier visualization!. The center of each
object A and B falls within the other object’s excluded area, e
resulting in an overlap, or bond. The number of bonds is 2.
contrast, the number of connections per object is the total numb
bonds~2! divided by the total number of objects~2!, here resulting
in one connection. In our 3D system, randomly oriented obje
have average excluded volumes, rather than excluded areas.
05613
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For example,Bc51.4 indicates a 140% probability per ob
ject to have a bond, or on average each object has 1.4 bo
or 0.70 connections.

We determineBc ~and thusCc), nc , and ^vex& numeri-
cally and can thus confirm Eqs.~4! and ~5! for randomly
oriented prisms. For example, for an aspect ratio of 3:1
obtain ^vex&5^vex&/V513.1 and ^vex&5Bc /(ncV)513.3.
Hereafter, we use Eq.~4! to calculatê vex& from Bc andnc
for randomly oriented prisms. In general, the larger num
of overlaps in our simulation results in a more rapid a
accurate estimate of̂vex& using Eq. ~4! than the method
described in Sec. II.

IV. NORMALIZED AVERAGE EXCLUDED VOLUME ŠVex‹

The normalized average excluded volume

^vex&5^vex&/V ~6!

is the factor by which the excluded volume is larger than
actual volumeV of an object. Figure 3 showŝvex& as a
function of aspect ratio for randomly oriented~solid line!
biaxial ~squares! and triaxial ~triangles! prisms and for
parallel-aligned biaxial prisms~squares along dashed line!.

As indicated in Sec. II,̂vex&58 for any parallel-aligned
convex 3D object. In contrast, randomly oriented biax
prisms exhibit an increase in̂vex& with increasing shape

h
n
of

ts
FIG. 3. Normalized average excluded volume^vex& as a func-

tion of object aspect ratio~and shape anisotropy,j) for biaxial
~squares! and triaxial ~triangles! prisms ~this study! and rotational
~biaxial! ellipsoids~circles, from@14#!. Solid and dashed lines indi
cate random and parallel orientation, respectively. Error bars
prisms indicate 95% confidence intervals. Short-over-medium a
aspect ratios for triaxial prisms are 1/2~upward-pointing triangle!,
1/5 ~leftward-pointing triangle!, and 1/10~downward-pointing tri-
angle!. Long-over-medium axis aspect ratios are as indicated by
figure axis.^vex& is calculated usingBc andnc in Eq. ~4! for ran-
domly oriented prisms~squares along solid line!. Squares along the
dashed line shoŵvex& for parallel-aligned biaxial prisms, deter
mined using the method described in Sec. II.
1-3
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MARTIN O. SAAR AND MICHAEL MANGA PHYSICAL REVIEW E 65 056131
anisotropyj due to flattening or elongation. The combine
effect of three different axis lengths of randomly orient
triaxial prisms increaseŝvex& further. This dependency o
^vex& on shape anisotropy is expected because randomly
ented objects with eccentric shapes have a higher probab
to overlap than objects of more equant shapes. In the extr
oblate and prolate limits the exponents in the power-law
tween aspect ratio and̂vex& are close to61 ~Fig. 3! indi-
cating a linear relationship.

Also shown in Fig. 3~circles! is the normalized averag
excluded volumê vex&e for rotational ellipsoids from@14#
recalculated from their data and Eq.~11! in @14#. Identical
values are obtained for^vex&e when using data from@14# and
employing Isihara’s@24# original equation as formulated b
Nichol et al. @27# and given here in our notation and wit
volume normalization as

^vex&e521
3

2 S 11
sin21e

eA12e2D S 11
12e2

2e
ln

11e

12e D , ~7!

where the eccentricitye2512b2/a2 is given for prolate and
oblate ellipsoids with long axisa and short axisb.

V. CRITICAL TOTAL AVERAGE EXCLUDED VOLUME
ŠVex‹

At the percolation threshold, the product in Eq.~4! is also
called the critical total average excluded volume@16#

^Vex&[nc^vex&5Bc . ~8!

Figure 4~a! shows^Vex& as a function of prism aspect rati
for all biaxial and some triaxial prisms investigated. Balbe
@19#, Haan and Zwanzig@12#, and Balberget al. @15# show
that in 3D soft-core percolation̂Vex&52.8 for spheres and
parallel-aligned objects of any convex shape,^Vex&50.7 for
orthogonally aligned~macroscopically isotropic! widthless
sticks, and intermediate,̂Vex&'1.4 for highly elongated
randomly oriented cylinders with hemispherical caps. O
results of 1.3,^Vex&,2.79, for randomly oriented biaxia
prisms, fall within Balberg’s@19# bounds.

In the extreme oblate biaxial prism limit our simulation
yield

^Vex&'2.3 ~extreme oblate prism limit!. ~9!

This result is in close agreement with studies of similar o
ject shapes@Fig. 4~a!# such as 2D polygons@4# and 2D el-
lipses@17# placed in a 3D system where 2.22<^Vex&<2.30
and^Vex&52.2, respectively~our definition of^Vex& is based
on a unit volume bounding box and thus already norm
ized!. The 2D shapes may be viewed as the extreme ob
limit of 3D objects. Garbocziet al. @14# report ^Vex&53.0
for randomly oriented oblate rotational~biaxial! ellipsoids, a
value higher than ours and above the upper bound of
suggested by Balberg@19#. This discrepancy has been note
by Garbocziet al. @14#, Husebyet al. @4#, and de Dreuzyet
al. @17#. Results presented in Sec. V also suggest that
05613
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rotational ellipsoids values of̂Vex& are lower and possibly
equal to values for biaxial prisms.

For an extreme prolate biaxial prism of aspect ra
1000:1 we observe

^Vex&'1.3 ~extreme prolate prism limit! ~10!

@Fig. 4~a!#. Balberg@19# finds^Vex&'1.4 for extremely elon-
gated randomly oriented cylinders with hemispherical ca

In general, maximum values of̂Vex&52.8 occur for
parallel-aligned objects of any convex shape@6,15#, where
the most equant shape possible, a sphere, is always alig
Therefore, it may be expected that we find a maximum o

^Vex&'2.79 ~cubes! ~11!

for the most equant prism shape, a cube@Fig. 4~a!#, where
the effect of randomness in orientation is at a minimum.

FIG. 4. Critical total average excluded volume^Vex& @panel~a!
and critical volume fractionfc @panel~b! at the percolation thresh
old versus aspect ratio~and shape anisotropyj) for biaxial
~squares! and triaxial~triangles! prisms~this paper! and rotational
~biaxial! ellipsoids~circles, from@14#!. Short-over-medium axis as
pect ratios for triaxial prisms are 1/2~upward-pointing triangle!, 1/5
~leftward-pointing triangle!, 1/10~downward-pointing triangle!, and
1/20 ~rightward-pointing triangle!. Long-over-medium axis aspec
ratios are as indicated by the figure axis. Error bars for pris
indicate 95% confidence intervals.
1-4
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CONTINUUM PERCOLATION FOR RANDOMLY ORIENTED . . . PHYSICAL REVIEW E 65 056131
It has been argued@14,19,20,28# that the total average
excluded volumê Vex& is not a true invariant but may b
viewed as an approximate invariant that is less sensitiv
object shapes thanfc . Our results confirm this reduced var
ability of ^Vex& as a function of shape aspect ratio~Fig. 4!.
At the same time,̂ Vex&'2.3 shows good agreement b
tween extremely oblate prisms, 2D polygons, and 2D
lipses, where the 2D shapes are the extreme oblate 3D lim
Similarly, ^Vex&'1.3 applies to extremely prolate prism
ellipsoids, and rods~hemispherically capped cylinders!.

VI. CRITICAL VOLUME FRACTION fc

Figure 4b showsfc as a function of aspect ratio for ran
domly oriented soft-core biaxial~squares! and triaxial ~tri-
angles! prisms. The maximum value offc is reached for the
most equant prism shape~cube with aspect ratio 1:1:1!. In-
creasing shape anisotropies due to flattening or elonga
decreasefc for biaxial prisms. The combined effect of fla
tening and elongation of triaxial prisms decreasesfc further
@Fig. 4~b!#. The larger the shape anisotropy of an object
greater its normalized excluded volume,^vex& ~Fig. 3! and
probability of overlap. As a result, percolation occurs
lower number densitiesnc . Lower nc values for different
object shapes result in reducedfc in Eq. ~1!, where differ-
ences in object volume have already been accounted fo
the volume normalization in̂vex&.

The circles in Fig. 4~b! are results from Garbocziet al.
@14# for randomly oriented soft-core rotational~biaxial! el-
lipsoids. Curves offc , as a function of aspect ratio, fo
ellipsoids and prisms have similar shapes but are offset
the most equant shapes and converge in the extreme o
and prolate limits. The offset between the curves for pris
and ellipsoids may be a function of the ratio

R5
^vex&e

^vex&p

~12!

for a given aspect ratio. If we assume that for a given asp
ratio

^Vex&p>^Vex&e , ~13!

then by Eq.~8!

np^vex&p5ne^vex&e , ~14!

where here and in all following equations the subscripte
and p denote parameters for ellipsoids and prisms, resp
tively. All parameters are defined as before withnp , ne ,
^Vex&p , ^Vex&e , fp , andfe being critical values at the per
colation threshold. Substituting Eq.~1! into Eq. ~14! yields

^vex&p

Vp
ln~12fp!5

^vex&e

Ve
ln~12fe!. ~15!
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Applying Eq. ~6! to the appropriate terms for prisms an
ellipsoids in Eq.~15!, then substituting Eq.~12!, and rear-
ranging yields the critical prism volume fraction

fp512~12fe!
R. ~16!

In the extreme oblate and prolate limits, the ratio in the e
ponentR approaches one~Fig. 3! and thus Eq.~16! reduces
to fp5fe as expected from Fig. 4~b!. For the most equan
shape~cube and sphere! the ratio is at its minimum of

R5
8.00

10.56
50.758, ~17!

indicating that the normalized average excluded volume fo
sphere is 75.8% of the one for a cube. The larger exclu
volume of a cube with respect to a sphere causes percola
at a lower volume fraction for cubes than for spheres. W
the result from Eq.~17! and fe50.2896 @10,11,13,14# for
spheres Eq.~16! yields fp50.23 for cubes, agreeing, t
within the uncertainty, with our numerical results offp
50.22. The agreement between results from Eq.~16! and
numerical results@Fig. 4~b!# for the most equant shapes a
well as for the extreme aspect ratio limits suggest that^Vex&
may be invariant for a given aspect ratio as postulated by
~13!. Thus, the curves in Fig. 4~a! are expected to converg
for a given aspect ratio, possibly to^Vex&p for prisms which
agrees with results for 2D objects@Fig. 4~a!#.

In the extreme oblate and prolate limits, the exponents
the power-law relating aspect ratio~or shape anisotropyj) to
fc are close to61 @line of slope61 in Fig. 4~b!#, indicating
a linear relationship. Indeed, becausefc is comparable for
ellipsoids and prisms forj.50, in this limit, the linear rela-
tionships

fc5H 0.6/j ~prolate!

1.27/j ~oblate!
~18!

hold true for both biaxial prisms~this paper! and rotational
ellipsoids@14#, where the shape anisotropyj is the ratio of
large-over-small axis for both prolate and oblate objects.

VII. SUMMARY

The percolation system of randomly oriented 3D soft-co
prisms serves as a link combining characteristics betw
other systems such as 3D ellipsoids, 3D cylinders with he
spherical caps~rods!, 2D polygons, and 2D ellipses. All ob
jects are randomly oriented and randomly placed in the
continuum. The 2D shapes are the extreme oblate limit of
objects.

Percolation parameters such as the critical volume fr
tion fc , the critical total average excluded volume^Vex&
[nc^vex&, or equivalently the average number of bonds p
object, Bc5nc^vex&, can be related in most of the abov
mentioned systems. Here, in the extreme oblate and pro
limits Bc'2.3 and Bc'1.3, respectively. The minimum
shape anisotropy of prisms is matched for cubes whereBc
52.79 reaches the prism maximum, close toBc52.8 for
spheres.
1-5
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With respect to biaxial prisms, triaxial prisms have i
creased normalized average excluded volumes^vex& due to
increased shape anisotropies. As a result,fc for triaxial
prisms is lower thanfc for biaxial prisms.

An offset in the critical object volume fractionfc occurs
between prisms and ellipsoids with low shape anisotro
This offset appears to be a function of the ratio of the n
malized average excluded volume for ellipsoids^vex&e over
^vex&p for prisms. Prisms and ellipsoids yield convergin
values for^vex&, and thus also forfc , in the extreme oblate
and prolate limits. In these limits both parameters exhib
linear relationship with respect to aspect ratio.
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